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Alastraet--The mixed convection flow, from a line heat source embedded at the leading edge of an adiabatic 
vertical surface which is immersed in a non-Darcian porous medium, is numerically studied by employing 
an implicit firtite difference Keller's box method. The non-Darcian effects of convective, inertia, and solid 
boundary are all considered. Both the buoyancy-assisting and buoyancy-opposing flow conditions have 
been investigated. The results are presented for the entire range of the mixed convection parameter 
AL = GrL/Rei[, a ratio of the buoyancy-force to the inertia-force, from the purely force convection (AL = 0) 
to the purely free convection (AL --* oo) regimes. It is shown that the non-Darcian effects decrease the peak 
velocities and increase the maximum temperatures. The criteria for the pure and mixed convection for a 

wall plume in porous media are established. Copyright © 1996 Elsevier Science Ltd. 

INTRODUCTION 

The study of a plume arising from a thermal energy 
source finds applications in several engineering fields 
such as : the disposal of nuclear wastes, hot-wire ane- 
mometry, volcanic eruption, electronic circuits, etc. 
The free and wall plumes, from a line or a point 
thermal source, in a viscous fluid have been studied 
extensively [1-3]. Flowever, the analogous problems 
of free and wall plmnes in a saturated porous medium 
have received rathe:r less attention. 

For free convections in a Darcian porous medium, 
Wooding [4] developed a boundary-layer theory for 
steady state natural convection from a line or point 
source in an infinite Darcian saturated porous 
medium. Lai [5] re-examined the same problem for a 
point source and obtained a closed form solution. 
Bejan [6] used a perturbation analysis to study the 
transient and steady natural convection from a point 
heat source at a low Rayleigh number in a Darcian 
porous medium of infinite extent. The steady point 
heat sources at low and high Rayleigh numbers in an 
unbounded Darcian porous medium were inves- 
tigated by Hickox and Watts [7] and Hickox [8]. Afzal 
and Salam [9] studied the natural convection arising 
from a point source in a Darcian porous medium 
bounded by an adiabatic conical surface. Coupled 
heat and mass transfer by natural convection at low 
Rayleigh numbers in an infinite Darcian porous med- 
ium has been reported by Poulikakos [10] for a point 
source; by Larson and Poulikakos [11] for a line 
source; and Lai and Kulacki [12] for a sphere. For a 
large Rayleigh number, Lai [13] obtained the simi- 
larity solution for a line source. 

For free convections in a non-Darcian porous 
medium, Ingham [14] obtained an exact solution for 
the free convection from a line source in an 
unbounded non-Darcian porous medium when only 
the inertia effect is considered. Local non-similarity 
solutions are reported by Lai [15] for natural con- 
vection from a line source to examine the inertia and 
thermal dispersion effects. Recently, the rigorous 
numerical solutions for the free plumes above line and 
point sources in non-Darcian porous media (com- 
bined convective, inertia and boundary viscous fric- 
tion effects) were obtained by Leu and Jang [16, 17]. 

The thermal buoyancy force plays a significant role 
in forced convection, when the flow velocity is rela- 
tively low and the temperature difference between the 
surface and the free stream is relatively large. Under 
these conditions, mixed convection analysis is needed 
because the pure forced-convection or the pure free- 
convection analysis fails to predict the flow or heat 
transfer characteristics accurately. The Darcian mixed 
convection from a line thermal source embedded at 
the leading edge of an adiabatic vertical surface in a 
saturated porous medium was numerically analyzed 
by Kumari et al. [18]. Cheng and Zheng [19] used the 
local similarity method to study the mixed convection 
plume above a horizontal line source. The inertia and 
thermal dispersion effects are included. It should be 
noted that, to the authors' knowledge, the non-Dar- 
cian effects on the mixed convection wall plume from 
a line source has not yet been investigated. This has 
motivated the present investigation. 

The object of the present work is to study the mixed 
convection flow due to a line thermal source imbedded 
at the leading edge of an adiabatic vertical plane 
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NOMENCLATURE 

C inertia coefficient 
Cp specific heat of fluid 
f dimensionless stream function 
GrL average modified Grashof number, 

Kl/2gflT* L2/v 2 
g gravitational acceleration 
K permeability 
L length of vertical plane 
Pr Prandtl number, v/ao 
Q strength of  thermal line source per unit 

length 
Rek dimensionless inertia parameter, 

CKuo~/V 
ReL average Reynolds number, u~oL/v 
Rex local Reynolds number, uo~x/v 
T temperature 
T* characteristic temperature of thermal 

line source, Q/pCpv 
u, v volume averaged velocity in x-, y- 

directions 

x, y distances along and perpendicular to 
the surface. 

Greek symbols 
cte effective thermal diffusivity of fluid- 

saturated porous medium 
fl coefficient of thermal expansion 
e porosity 
t/ pseudo similarity variable, yRellE/x 
AL mixed convection parameter, GrL/Re 2 
/~ dynamic viscosity 
v kinematic viscosity 
0 dimensionless temperature, 

(T-- To~)Re~x/2 /T  * 
stream function 

p fluid density 
non-similarity variable, x 2 Rex 1/K. 

Subscript 
condition at the free stream. 

immersed in a non-Darcian porous medium. The non- 
Darcian effects of convective, boundary and inertia 
are all considered. The governing partial differential 
equations are solved using a suitable variable trans- 
formation and employing an efficient finite-difference 
Keller's Box method [20] and the results are compared 
with those of the Darcy flow model [18]. Both the 
buoyancy-assisting and buoyancy-opposing flow con- 
ditions are considered. The criteria for the pure and 
mixed convection for a wall plume in porous media 
are established. 

MATHEMATICAL ANALYSIS 

We consider the mixed convection form a line heat 
source, generating heat a rate per unit length of Q, 
which is embedded at the leading edge of an adiabatic 
vertical plane surface placed in a saturated porous 
medium. The physical model and coordinate system 
are illustrated in Fig. 1. The forced flow is along the 
plane surface and the direction of the free stream 
velocity can be either assisting or opposing the buoy- 
ancy-induced convective velocity. In order to study 
transport through non-Darcian media, the original 
Darcy model is improved by including convective, 
boundary viscous and inertia effects. In addition, if 
we assume that:  (1) the convective fluid and porous 
medium are in local thermal equilibrium ; (2) variable 
porosity and thermal dispersion effects are neglected ; 
(3) the Boussinesq and boundary-layer approxi- 
mations are employed, then the governing equations 
become 

Ou Ov 
+ ~-  = 0 (1) 

8x oy 

( P u ~ x + v  = ++_p~gfl(T--T~) 
8 2 

/2 2 2 ~ 0 2 u  
- 2 ( u - u ~ ) - p C ( .  -uo~)+ ~Fy ~ (2) 

¢3T OT 02T 
u-~x +V-~y = ~e Oy 2 (3) 

where e and K are the porosity and permeability of 
the porous medium, respectively; C is the transport 
property related to the inertia effect ; ~o is the effective 
thermal diffusivity of the saturated porous medium. 
The other symbols are defined in the Nomenclature. 

The '  + '  signs in equation (2) correspond to upward 
forced-flow (buoyancy-assisting) and downward for- 
ced-flow (buoyancy-opposing) conditions. The 
boundary conditions for equations (1)-(3) are 

x = 0  y > 0  T =  Too u = u ~  

0T 
x > 0  y = 0  ~ y = 0  u = 0  v = 0  

y ~ o o  T =  To~ u = u ~ .  (4) 

According to the principle of conservation of  
energy, at any position x > 0, the convective energy 
should be equal to the energy released by the line heat 
source, Q. Thus 
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and coordinate system. 

foo 
Q = pCp J o  u ( T -  T~) dy. (5) 

By using the scale analysis, we can introduce the 
following non-dimensional variables 

X 2 
rl(x,y ) = Y R,?x/z ~(x) = ~ R e x '  

qJ(x,y) O(~,rl ) _ T J o ~  Relx/2 
f(~, ~l) vRelx/2 

(6) 

where Rex = u®x/v is the local Reynolds number; 
W(x, y) is the stream function that satisfies equation 
(1) with u = 3W/Oy and v = -OqJ/Ox, and the charac- 
teristic temperature of the line source temperature T* 
is defined as 

T* = Q/pCpv. (7) 

Substituting equation (6) into equations (1)-(3), we 
obtain 

1 ,, 2 ~ f f , , + A L , p / E 0 _ ¢ ( f , _ l  ) J + 

- -Rek~( f  "2 -- 1) = ~2 ( f"  Of' 
OA 

~ f 
tt (8) \ 0¢ ~w 

0"+ 1 , , 0 0 - - 0  ~( f 'O+ fO ) = (9) 

where the primes denote partial differentiation with 
respect to t/. Pr = v/a, is the Prandtl number. AL --- 
GrL/Re 2 is the mixed convection parameter, which 
measures the relative importance of free to force con- 
vection. AL = 0 corresponds to the case of purely force 
convection condition. AL ~ oO corresponds to the case 
of purely free convection condition. It is noted that 

A L is not the function ofx.  Gr L = Kl/2gflT*L2/v 2 is the 
average modified Grashof number. ReL = uooL/v is 
the average Reynolds number. Rek = CKuoo/v is the 
dimensionless inertia parameter expressing the rela- 
tive importance of the inertia effect. The '  + '  signs that 
appear on the left hand side of equation (8), denote 
the buoyancy-assisting plume and buoyancy-oppos- 
ing plume. It is noted that Darcy's law [18] cor- 
responds to the case of ( ~ oo with Rek = O. 

The transformed boundary conditions for equa- 
tions (8) and (9) are 

~ /=0  f ( ~ , 0 ) = 0  f ' ( ~ , 0 ) = 0  0 ' ( ~ , 0 ) = 0  

r / ~ o o  f ' (~ ,co)  = 1 0(4, o o ) = 0  (10) 

and the transformation of equation (5) is 

o°f'Odrl = 1. (11) 

In terms of new variables, it can be shown that the 
dimensional velocity components and temperature are 
given by 

u(x,y)  = uoof'(~, q) 

- - V R a l / 2 ( f - - r l f  + 2 ~ )  v(x, y) = 2x ---x , Of 

T(x , y ) -  T~ = T*ReUO(~, n) 

U3o~/2vl[ 2 

K,/2gflxlfiALO(~,rl). (12) 

NUMERICAL METHOD 

In this study, the Keller's box finite-difference 
method was used. Equations (8) and (9) associated 
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with boundary conditions (10) and (11) were solved 
by an efficient and accurate implicit finite-difference 
method similar to that described in Cebeci and 
Bradshaw [20]. To begin with, the partial differential 
equations are first converted into a system of first- 
order equations; then these first-order equations are 
expressed in finite-difference forms in terms of center 
difference. Denoting the mesh points in the ~-~/plane 
by ~i and ~b where i --- 0, 1 , . . . ,  M a n d j  = 0, 1 . . . . .  N, 
this results in a set of nonlinear difference equations 
for the unknown at (i in term of their values at ~i_ ]. 
The resulting nonlinear finite-difference equations are 
then solved by Newton' iterative method. The boun- 
dary-layer equations are thus solved step by step, by 
taking the converged solution at ¢ = ~i- ~. To initiate 
the process, equations (8) and (9) with ~ = 0 are first 
solved by using a sixth-order variable-step-size 
Runge-Kutta integration scheme. After obtaining a 
converged solution along ¢ = 0, this solution is then 
employed in a Keller's box scheme with second-order 
accuracy to march step by step along the boundary 
layer. 

We adopted the numerical algorithm [21] to deal 
with the integral constraint equation (1 I). We first 
drop the boundary conditions f ' ( ~ , 0 ) = 0  and 
0'(~, 0) = 0, then assume other presupposed boundary 
conditions f " ( ~ ,  O) = s and 0(~, O) = t, where s and t 
are the undetermined nonzero constant. The refined 
values of s and t can be estimated by the Newton- 
Raphson method, associated with one set variation 
equations which were derived by taking the derivatives 
of the finite-difference equations of equations (8) and 
(9) and their boundary conditions (10) with respect 
to s and t. These variation equations can also be solved 
by using Keller's box scheme. The dropped boundary 
conditions, together with the integral condition, equa- 
tion (11), are treated as constraints. The iterations for 
adjusting the presupposed boundary conditions are 
repeated until the following criterion, which is the sum 
of squares of the discrepancies for the constrained 
conditions, is satisfied : 

n 2  +[ f ' (~ ,O)]2  +[O'(~,O)] 2 <~ 10 -8. (13) 

In the calculations, the value of ~/~ = 10 was found 
to be sufficiently accurate for LfL-11 < 10 -4 and 
[0~1 < 10 4. Uniform step sizes ofA~/= 0.01 in the r/- 
direction were used. The step sizes of A( in the C- 
direction were also uniform, but A¢ depended on the 
value of AL. As AL is increased from 0-1000, A~ is 
decreased in the range 0.05-0.0001. 

R E S U L T S  A N D  D I S C U S S I O N  

The three different solid-fluid combinations shown 
in Table 1 were used in this study. The values of 
permeability K and inertia coefficient C were cal- 
culated by employing the Ergun model [22] : 

K = d2e3/[150(1- -e)  2] C = 1.75(1 - e ) / e 3 d .  

Table 1. The three different solid-fluid combinations used in 
this study 

Fluid Air Air Air 

Solid Glass Glass Glass 

d [mm] 3 6 15 

e 0.375 0.4 0.453 

u® [m/s-'] 0.1 0.1 0.1 

K [m 2] 8.1 × 10 -9 4.27 x 10 -s 4.66 × 10 -7 

C [m -~] 6913.6 2734.4 686.5 

Rek = CKu~/v 0.3524 0.7342 2.0134 

Figure 2 shows the different non-Darcy effects on 
the velocity and temperature profiles across the boun- 
dary layer for the buoyancy-assisting flow AL = 10 at 

= 5. The velocity profiles are referred to in the left 
and lower axes, while the temperature profiles are 
referred to in the right and upper axes. There are three 
cases included in this figure, they are the Darcy model 
[18], boundary effect (B) and the combined boundary 
and inertia effects (B + I). Therefore the boundary and 
inertia effects can be seen from the differences between 
the Darcy model and (B), and (B) and (B + I), respec- 
tively. It is seen that, as would be expected, both the 
boundary and inertia effects decrease the tangential 
velocities and increase the wall temperatures. The 
Darcy solutions overestimate the velocity and under- 
estimate the maximum temperature. 

Representative velocity and temperature profiles 
across the boundary layer for the buoyancy-assisting 
flow at different values of the mixing convection par- 
ameter AL( = 1, 5 and 10) are presented in Fig. 3. The 
dashed lines represent the Darcy model [18]. From 
the definition of A L -~ GrL/Re  2 = K l / 2 g f l T * / u ~ ,  the 
mixed convection parameter AL depends on the source 
strength Q for the fixed value of u~. It is observed 
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Fig. 2. Different non-Darcy effects on the velocity and tem- 
perature profiles for the buoyancy-assisting flow AL = 10 at 
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Fig. 3. The velocity and temperature profiles for the buoy- 
ancy-assisting flow at different values of mixing convection 

parameter AL. 

from Fig. 3 that lor a fixed x and u~, the plume 
velocity, the velocity overshoot and the wall tem- 
perature increase as the mixed convection parameter 
AL, or the source ,;trength Q increases. In addition, 
the location of  the maximum velocity moves closer to 
the adiabatic wall, thus causing an increase in wall 
shear stress. For AL = 10, based on the (B+I)  non- 
Darcy model, a 40% overshooting of the velocity 
beyond its free stream velocity is observed, while 
based on the Darcy model, the velocity is dramatically 
overshot by 100%. Moreover, it is seen that the dis- 
crepancy between the Darcy law [18] and the (B+ I) 
model is large for large values of AL. 

Figure 4 shows the inertial effect (Rek = 0.3524, 
0.7342 and 2.0134) on the tangential velocity and tem- 
perature profiles al: ~ = 5 for the buoyancy-assisting 
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Fig. 4. The inertia effect on the tangential velocity and tem- 
perature profiles at ~ = 5 for the buoyancy-assisting flow 

A L = 10. 
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Fig. 5. The wall shear stressf"(¢, 0) for the buoyancy-assist- 
ing flow over the entire mixed convection regime, 

0.01 ~< AL ~< 1000. 

flOW AL = 10. Plotted with dashed lines in the figure, 
for comparison, are the results from the Darcy model 
[18]. It is seen that the inertia effect decreases the 
velocity and increases the temperature. This is because 
the form drag of the porous medium is increased, 
when the inertia effect is included. 

The dimensionless wall shear stress f ' (4,  0) and the 
wall temperature 0(4, 0), for the buoyancy-assisting 
flow, are presented in Figs. 5 and 6, respectively, over 
the entire mixed convection regime 0.01 ~< AL ~ 1000. 
It is seen that the dimensionless wall shear stress 
f"(¢,0) increases and the wall temperature 0(4,0) 
decreases as the mixed convection parameter 
increases. The limiting cases of purely force con- 
vection (A L = 0) and purely free convection [16] 
(A L ~ (30) wall plumes are also shown as asymptotes 
in the same figures. They identify the region where 
both pure force and free convection results differ from 
the predicted mixed convection values. The criteria 
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Fig. 6. The wall temperature 0(4, 0) for the buoyancy-assist- 
ing flow over the entire mixed convection regime, 

0.01 ~< AL ~< 1000. 
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Fig. 7. The velocity and temperature distributions for the 

buoyancy-opposing flow condition at ~ = 0.1. 

flow separation. Flow separation occurs at 
A L = 3.5149 for ~ = 0.1 and at AL = 5.1107 for ~ = 1. 

C O N C L U S I O N  

The non-Darcian effects are investigated for a wall 
plume from a line heat source embedded at the leading 
edge of  an adiabatic vertical surface which is immersed 
in a saturated porous medium. The results are pre- 
sented for the entire regime of  mixed convection, from 
the purely force convection (AL = 0) to the purely free 
convection (AL ~ ~ )  regimes. It is shown that very 
large errors in transport prediction may arise from the 
Darcy model. The Darcy solutions overestimate the 
velocity and underestimate the maximum tempera- 
ture. For  the buoyancy-assisting flow, the wall tem- 
perature, velocity and wall shear stress increase, as the 
mixed convection parameter AL or the source strength 
Q increases; while for the buoyancy-opposing flow, 
the wall temperature increases, but the velocity and 
wall shear stress decrease. 

for pure or mixed convection about  a wall plume can 
be established if the 5% deviation rule is applied. It 
follows that 0 < AL < 0.1 for purely force convection, 
0.1 < AL < 100 for mixed convection and AL > 100 
for purely free convection. 

The velocity and temperature distributions for the 
buoyancy-opposing flow condition are simul- 
taneously presented at ~ = 0.1 and ~ = 1, respectively, 
in Figs. 7 and 8. As the source strength increases, the 
temperature and the plume width increase, but the 
velocity and wall shear stress decrease. Since the 
analysis is based on the boundary-layer approxi- 
mations, only the buoyancy-opposing wall plume with 
slightly negative buoyancy can be studied. The present 
solutions terminate when the velocity gradient at the 
wall becomes close to zero, indicating an approach to 
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Fig. 8. The velocity and temperature distributions for the 

buoyancy-opposing flow condition at ¢ = 1. 
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